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1. Iotroduction

In the past fifteen years or so, there have been quite a number of papers dealing with variations on
the following general theme. Given a graph G and a positive integer m, m < |V(G)| |, find non-trivial
conditions on G which will guarantee that given a set S = {v4, ..., vmy} _ V(QG) , there exists a cycle Cg

containing S. In the special case m = |V(G)], We are dealing with conditions for the existence of
Hamiltonian cycles, in itself a subject studied extensively by many graph theorists.

For the most recent survey of the subject for general m , the reader is directed to Holton [1983] and
Plummer (1983). In particular, some interesting questions remain unsettled in the special case of reguiar
graphs. Let C(m) denote the class of all graphs which have the property that every set of m points lie on

some cycle. The largest m for which G ¢ C{m) is called the gyclahility of G. Now suppose k23 and let
f(k) denote the largestinteger j such thatin every k-connected k-regular graph every j soints lie on
some cycle. It was proved by Holton (IS82) and independently by Kelmans and Lomonosov (1S82a) that
f(k) 2 k + 4. This lower bound for f(k) is not believed to be best possible. For example, Hotton, McKay,
Plummer and Thomassen (1984) proved that f(3) = 9. This result was also obtained by Kelmans and
Lomonosov independently and announced without proot in (1982a). Mevedith (1973) constructed an
infinite family of graphs which show, among other things, that F(k) 2 10k - 11, Thus a rather large gap in
possible values for f(k) remains at this writing. Recently, McQuaig and Rosenfeld (I984) have shown that
‘or all even k 2 4, there are infinite families of k-connected k-reguiar graphs with cyclatilities 8k - 4 when

k=0 (mod 4) and 8k -5 when k = 2 (mod 4).

More recently, interest has been generated in the related questicn of cyclability of k-cornected
r-regular graphs for r2k + 1. First of all, Dirac {I960) proved that for any k-connected gragh, regular cr rct,
the cyclability is at least k. It is interesting to note that in the case of k-connected (k + )-regular graphs
having k gven, the Dirac bound cannot be improved. To see this, consider the ccmplete bipartite graph

Ki, k+1 where the bipantition sets U and W have |Uj =k and |W| =k + | respectively. The cyclabiiity of
K. k+1 is clearly k. We can easily modify Ky y,q to yield a graph H, which is k-connected and

(k +1)-regular by replacing each point of W by a copy of the graph obtained from Ky,o byceleting a

matching of cardinality g_ {Figure 1.1 shows how this is done for k = 4.)
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Figure 1.1

More generally, with k still even, but r2k + |, Holton (1982) has constructed other grapns which are
k-connected and r-reguiar, but which do not fie in C(k + 1) and hence have cyclability precisely k .

Now suppose k isodd. It r2k + 2, Holton (1982) has constructed k-connected r-regular graphs
which do not lie in C(k + 1) . This, again together with Dirac's bound, shows that any k-connected r-regular

graph has cyclability =k , asiongas k iseddand r2k+2.

So in a sense, the only case left unsettled here is that of k-connected (k + 1)-regular graphs fcr k23
and k odd.

One can do a bit better than the Dirac bound here as was shown by Holton (1$82), and incdepencently
by Kelmans and Lomonosov (1€82b), via the following result.

Theorem 1.1. Inany k-connected (k + 1)-regular graph with k23 and odd, any k +2 peintsliecn a
cycle.

Thus the cycability of such graphs is bounded telow by k + 2.

In fact, Kelmans and Lomonosov (1282b) claimed that the conclusion ¢of Theorem 11 ¢an be improved

to k + 3, but this claim is false, at least for k =3 . For a counterexample due to the present authors, see

Holton, (1983). Since Kelmans and Lomonosov did not publish the proof of the k + 3 bound, the situation




4
for k odd and k 2 5 is presently unknown, at least to the present authors. In s 1982 paper . Holton gees
ontoshowthatit k isodd and k23 andit h(k) is the largest positive integer m tfor which all k-connected
(k + )-reguiar graphs le in C(m), then h(k) s 9k .

In the present paper, we will prove that, infact, htk) s 2k - 1. (This result was announced without
proof by Holton (1983).) To accomplish this, we shall construct, given k 2 3 and odd, a graph Gy which is
k-connected and (k + 1)-reguiar, but which has a set of 2k points which do not lie on a common cycle. The
procedure will be as follows. First we construct a graph G’k which is k-connected and which has all points
with degree ether k or k + 1, but which has a set of 2k points not lying on any cycle. Then we modity Gy
first to obtain an intermediate graph G”x and then, in tum, modity G™g to obtain a k-connected

(k + I)-requiar graph Gy having a set of 2k points which ie on no common cycle.

The construction is done in two slightly different ways depending upon whether k = 1 (mod 4) cr

k = 3 (mod 4). The reacer is encouraged 1o refer to graphs G's and G'y to help understand the

constructions in general. (See Figure 2.1))

2. The Conrstryction ot Gy .

Let k23 be anocddinteger. Inallcases Gy will be a bipartite gragh wrth tiparntition (X Y o v 2 . 7

-

where

X = {Xo, X1, . Xk_‘} )

Y = (g Yk Y= Y0 Yieah
2 2

Z= {Zo, rey Zk,{} . Z = [Z'o, . Z'k-1) )

The linesin G are defined as follows. Every point of Y (respectively Y is adjacent 10 every ocint .0

Z (respeciively Z') . For the remaining adjacencies we sglit the cescription into two cases. Suppose k = 1
(mod 4). Foreach i=0, ... k-l bothz and z; are adjacentto x;, Xj.1, Xj o1, .. Xj - K-1 - Xia ko1 where
4 3

subscnpts are taken modulo k. Inthe case inwhich k = 3 (mod 4),for i=0, ... Kk-I. beth z; and | 2

fs.
g
@

adjacem 1o Xj Xi.{, Xjpq. - Xji. k-3
4

Xiy ka1 . Where againthe subscnpts are taken meculo &
4
The modulo k “circular symmetry” for adjacencies among the x; 's. Zj 's and 'y 's isimgertant to tear

in mind and will prove to drastically reduce the number of cases we will have to treat in orcer to prove that
Gk is k-connected.
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q Finally, we note that G'5 is just the well-known Hershel graph.

h ')

3. Theconpectivityof Gy .

!

. Note thatin G'x we have degu = k for u€ UZUZ anddegu = K+ 1 for u€ X.

\

‘

h) .

We now proceed to prove that G’y is k-connected. To this end, let u and v be two distinct points in

’ V(G) . We must find k openly disjoint paths joining u and v. Wa shall refer to such a family of paths as
: openly disjoint u - v paths. Here gpeply disjcint (hereafter abbreviated as .d.) means that the paths
\
) joining u and v are otherwise pairwise point disjoint. We shall often refer to a set of k openiy disjoint u-v
p paths as a k-skein joining u and v (oras ay -y k-skein).

“

b

N

2 1. Firstsuppose f{uv) ¢ Y. Say u=yg and v = yy. Then yo2oyq. YoZ1Yq, - Yo2k-1Y1)
= suffices as the u - v k-skein. The k-ccnnection between two points of Y follows by symmetry.

2. Suppose u€Y and v € Y' . Without loss of generality, assume u = yo and v=y'g. Then

{YoZoXoZ'oY'or - YoZk-1%k-12'k-1Y ‘o} suffices.
i
: For the rest of the cases, we will treat the congruence classes k = | (mod 4) and k = 3 {rmcd 4)
separately.
Y First suppose k= 1 {med 4) . (Thus k25 )
3a. Suppose u€Y and v€Z ,say u=yg and v = 2 k-1 - Notethatfor i=0,1,.. k-3 wehave

[ 2

z 2

N Z; adjacentto x Kl o+ So let

N 4

- Pe¥odx it « 2k, fori=0.kg3,

’ 7 2

?

: q=y02m+iﬁz&l, fori=1, .. K3 and let

¢ 2 2 2

R1=Y025__1_ arﬁS1=yOZk.1X3k__3 Zki.
2 4 2

Then  {Pg, . P g3 Q1. Q ey (Ry.Sy}  isau-v keskein.

Tl AN T T T
S S A, P, 5 L S



(
7
(‘
»
4a. Suppose U€Y and v € X. Without loss of generality, suppose Uu=yg and v=x .1 . .
2 »
, A,
Let Pi’yoz&-_1+ixk'_l' for i=Q, .., ki. .
) 4 2 2 ’
oy
Now let Q = yoZX ¢y +iZ jt +i Xkt » fori=0,..kg :
4 4 2 4
N
and let the "mirror images” of the Q's aboutthe axis z k.41 x k.1 Zk.; be ~
2 2 2 .
Ro= Xy ZiNZgg +iYo. fori=mket,., 3. A
2 4 2 4 -
We then have a total of 1&21 + }sij, +3}_<2_-. - }524 = K 0.d. u-v paths as desired. -
.
-
»
I
S5a. Suppose u€Y and u € Z. Without loss of generality, let u=yq and v=2' .y . Thenlet
2 _
&
3
Pi=Y0Zkt 4i Xkt #i Z g+ i=00 o Ko, hy
4 3 2 2 -
Lo
‘p
Q=03%5ZYiZky - i=0,..Kk5, and let
2 4 -‘
Ri = Y0Z 3kat +i X 3kal +i Z 3kel +i YV K1 i 2 k1 fori=0, .. k2. ::-
4 4 4 4 2 4 o
_-t‘
We then have a total of 2%1_ + K1 + K1 =k 0d. u-v paths as sought. 53
4 4
e
6a. Suppose u and v arebothin Z.
,
s
First note that any pair of z;'s have at ieast one common neighbour in X (and infact, there are pairs o z;'s -".
which have exactly one common neighbour). For example, (and for the sake of symmetry when working -;:'
with the drawing in this case) let u=2 .1 andlet v= 2z k-3 - Nowlet
4 4 N
oS
A
F‘,sz&ly,zw , i=0,..,K3 andlet ',:
4 4 2
»
Pkt = 2Ky Xkt Z22k3 - Next let i,
2 4 4 4 -
~
QSZK__]_ XiZ'iYiZ'm*iXm”ZM fori=0,..,k3. ::
4 2 2 4 2 o

- N D A L AP A LR
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Then we have a total of }g-_21+1 + 1;_21 = k 0.d. u-v paths as desired.

Now if the two z;'s chosenfor u and v have r2 2 coimmon neighbours in X, then in addition to the

k+1 paths of type P; above we get r-1 more of the form ux;v . Taking these together with k-1 - (r-1) of
2 2

type Q; above, we get atotalof k+1 + 1 + k-1 -(r-l) = kK 0.d. u-v paths as desired.
- 2 2

7a. Suppose u€Z and v€ X. Without loss of generality, assume u =2z K-1 - There are now two
cases to consider. 2

First supposethat v T(u) ™ X = (2 K-1 )\ X. (Here and throughout the rest of this paper I'(u)
2

2

which are of the form x; z';. Then |M| = k+1 andwe canfind k+1 o.d. u-v paths using
2 2

M, r ofthemof length 3 where r is the number of neighbours of v in Z which are coveredby M and

denotes the neighbourhood of u.) Let M denote the “vertical® matching of I (z k-1 ) into ail lines of

kel -r oflength S which are of the fom v 2 Yk 2'm Xm Z k.1 . where ZmxméM . but ZmeTrvyNZ .
j Tk #m *m < k-1 mXm m

2 2
On the other hand, v always has at least k+1-1 = k-1 neighboursin Z which are not equalto z k-1 and
A 2 2 2
these can be used to form an additional k-1 o.d. u-v paths. Again, then, we get ket + k-1 = k o.d. u-v
2 2

paths as required.

Sowe may suppose that v T(u) X = T (z k-1 )M X. Thistime we have k-1 o.d. u-v rathsci
2 2
length 3 of form z k-1 Yizv, theline z ., v and k-1 additional paths of length 3or 5 cttaired as
2 F 2

follows. Consider the matching M’ of T'(u) ™ X “vertically*into Z ; thatis, all lines of M' are of the form

xj Zi . Delete from M’ the line covering v and denote by M~ the resulting matching of size k-1 . Now i
2
M" covers a neighbour of v we get a path of length 3, while if aline e of M" does not cover a peint of

C(vyM Z, wecanfinda u-v pathof length 5 using e by detouring through V" .

Nowif u and v have r22 common neighbours, then it is easy to see that there is still a set of k=1
2

u-v paths of length 2 or 4 where the paths of length 4 are of the form z k-1 Yj ZmXm7Zj. where
2

Z .1 =uand zj = v. Thenone can find an additional k«1 -r u-v paths of length 4 of the form
2 2

Z k1 XmZmYj2Zi andthe remaining k -( r+ kel -r + ket -r} = r -1 paths of length 6 having the form
2 2 2 ]
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z 1%1 YjZmXmEmYn3 -

8a. Suppose u€ Z and v € Z . Without ioss of generality, let u=z k-1 - Now note that regardless
2

ofwhere visinset Z, r = [IU)N X) N (VYN X)|> 0. Solet 54 = |TU)NX) - (V) N X)|, let

Sp=|TWNX)-T(v)NX)| and sg=|{X-(T(u)\UT(v))l. Thendearly r+sqy +s; +53 = k. Those member:
¢t X countedby r giveriseto r o.d u-v paths of length 2. Foreach point x; of X countedby sy take
fne x;2';, for each counted by s, take iine x;z; andfor each counted by s5 take the path

Zix; Zj. Thelines x; Z; counted by s4 giverisetc u-v paths of length 4 all of form u x; Z'; y'jv.those
counted by s, yield u - v paths of length 4 of torm uyjzixv and those courted by s, yield u-v paths

of length 6 all of the form u y; zj x; 2 yj v . Altogether, these form a collection of k o.d. u-v paths.

9a. Finally, supposeboth u and v€ X. Let u=x; and V=X Consider T (x;) MZ = Nz(x;) .
It zm € N2(x;) thenifitis also in I‘(Xj N2 = Nz(xi) we have a path of length 2 - namely x; Zm X - joining
Xj and x;. Cn the other hand, it Zq € Nz(x; - Nz(x;) then we have a path of length 4 - namely

Xi ZmYn 25 Xj - joining x; and X;. This yields a total of 5;_}_ 0.d. u-v paths and they all lie within

GyXW 2w Y]. Butclearly there is a second setof k+! 0.d. u-v paths (the reflections of the ‘irst set cf
2

pathsinthe X axis) which, together with the first set yields atotal of k + 1 0.d. u-v paths as sought.

Now let us suppose k = 3 (med 4).

3b. Suppose u€Y and v< Z . Without loss of generality, suppose u =y, and v =

z g
2
Let P 2Y0GX Kol +i 2kt oo fori=0, ., k-3,
4 2 2
Q=YOZ£<.;1+iYiZ&;' fori=1, K3,
2 2 2
Ry =YoZgg and Sy =yoZsX g1 Zya -
2 4 2
Then Pg...P K3 .Qq, ... Q K-3 Ry, S} is a k-skemn icining U and v .
2 2
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4b. Suppose UEY and v< X. Without loss of generality, suppose u=y, and v =x K-t - -
2 n
Let Po=YoZkg +iXkt. I=0..kl.  Nowif k=3, ket .
4 2 2
Q = Y0ZX gyt 417 kol +i Xt =0 kT andif k=3, let Qp=o0. K
4 4 2 4 -
Aso let R =Xy ZiXg1Z gy +iY0,  for i=kil, .. 3KS. We then have =
2 4 2 4
atotal ot }%1 + k3 + 35 - 112_3 = k 0d. u-v inesin all cases.
4 4
Sb. Suppose u€Y and v¢ Z. Without loss of generality , let u=yg and v = 2 Kt y
2 .
Thenlet P = yoZ ki 4i X ket +i € ket for i=Q, .. K1 Z'.:
4 4 2 2 s
Q. YoBNZjYiZ gy fori=0,..k3, and 2:;
2 4 -~
and let Rie= Y02 2153 +i X 3kal +1Z a3 +i Y ket +i 2y fori=0 .. kZ, whenk2T7. f;ﬁ
4 4 4 4 2 4
(For k=3, let Ry = ¢.) ‘
We then have a total of }5_451 + k=1 + X-3 = kK 0.d. u-v paths as desirec. 'i'.j
4 4
~
db. Suppose u and v are bothin Z. Again, as in 6a, ncte that every pair of Xj'S have at 2astina -
-
commen neignbeur in X and in fact there are pairs with exactly common neighbour. Lat u =72 .2 3nc ,
- "
V=2 ak.5 . for example. ol
4 4 »
First suppose K27 .
New et b'I
F*,=z}_<___3 Yi 2 2k5 - 1=0, ..., &3 and ‘et :
4 4 2 N
Pm=zh__1 Xt Z2Kk3 - Next let
2 4 -
Py
.A'\
Qazmxiz'-,y,z’m“xm”zaﬁ for i=0,...,k3 . -y
4 2 2 4 2

>
o,
'
.
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Thusweommnatotalots-zld + X1 =k o0d u-v pathsasdesired. If k=3, then 30.d. u-v paths

are obvious.

Nowit k27 andthe 2 z's chosenfor u and v have r22 common neighboursin X, then in addition to

the x+1 paths of type P; above, we get r -1 more of the form u Xj V. Taking these together
2

with k-1 -(r-1) oftype O above wegetatotalot k+1 +r-1 + k-1 -(r-1) = k 0.d. u-v paths as desired.
2 2 2

Theprootsof Cases 7> (uc Z, vEX), 80 (UEZ, veé D) and Sb (uv € X) are identical to those for
Cases 7a,8a and %a respectively.

This comgletes the proot that G'y is k-connected.

4. The Copstruction ot Gy, .

Recal .hatingragh Gy eachpaintin Y U Y U Z U Z hasdegree k,while each pointin X has

degree x +1. We now proceed to construct a [k + N)-regular graph G from Gy as follows.

—

Furst consicer 2ach iire ciniNg some yi £ Y toa z; £ Z. Insent a new "micpeint” on this ine anc cail t

%j Similarly, insert a micpeoint 3” oneach.ine oninga z; toan Xj Micpeints are similarly insertad zn

ires ciringa y, ‘o a2} andcnines,cinnga | toan xj They are cailed i and 53] resgeciively.

New we regiace 2ach pointef Y O Y W 2w Z with a setof points as fellows.

First suppese < = *'mecd) Foreach < 0, .. x-3: . replace Yi Oy aset Ay of 2k new points jcined
2

tNO Dy *wo 10 micDeIrts Lg - R ® k.-, respecuvely. Ncw reciace y, .4, by aset B -2 consisting
2 2
ot 2k points, x cfthem cired sre at 3 ume ‘0 2ach a 3 fer {=03... %1 andhe remaining X ‘cined
2
‘0 yet ancther new poirt b Reclacethe y;'s wnth sets A, and 3 X3 M asymmetlnc manner.

<
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Next, replace each z € Z with a set Cj of points as follows. For each ine of the form a;; 2; ‘or @ = <2

o ==

2
insert k-1 new points into Cj and join each o “ii' Also replace a k3 i % with an acditional k new ccirts
2

Furthermore, for each line of the form Bjr X . insert k new points into C; and join each to 31, See Fgure

4.1a.) Thus altogether, Cj contains (K-3) (k- + K+ (Ke11 k = 2k2- k+3 points, which since k = ' .mod 4| s
2 2 2

an even number.

Thus when k = 1 (mod 4), all of the sets A, Cl and 8B k-3 contain an even numeer 2t pCirts.
2

"Mirmor image” sets A}, B' .4 . C'; and point D' are CONSIrUGied anaicgeusly
g i K3 ]
2

Now since eachofthesets Ay, Aj . B .3 . B .3 . C;. C| havemorethan « peirts arc 2act s
2 2

even, we may invoke Lemma 4a of Wang and Kietman (!S73) to cencluce that there 2xisis 3 «-orrecizs
k-regular graph on each of these sets of paints. Insert such a k-regular 3rach cn each such ccint set

Finally, join points b and &' . Cilearly, the resulting gragh Gy s X+1)-reguiar.

Now suppose k = 3 {mod 4) Inthis case we caniInstruct 3 X« -reguidr 3, AMCnh §2var s —o oz

than that buiit for the case k = 1 /mad 4) inthat no “sgec:al” reciacement ‘cr v <3

In G, inset midpoirts q,; and 3. asoefsre Fereach 1=1. a2 rerace 4, v asel A ot ol
K Y ] ‘

points joined two Ly two to each @ Reglace 2ach I by asat ‘C} rsisurg st xRt cres

time to each of the -1 ciflerent & S.OAISC ACC K K=t SCQUICTEIIQMIS S DL TSl . 3 Tetisine

2 2
of the cifferent 33!» 's . {See Figure 4.b:

Once again ccnsiruct the “mumer mage” 3e's AL ird ' 373.Cgeusy

New each A/ and A contains 2k peints whie 2ach , are O s0Mars =t = « 2o = 1 10
‘ :

k+1) points which s also an even numger sincg <« = 3 TCc 4 Thus again oy he Narg 32 ~ gimar

"d»&;il - AN N

result we can construct k-connected k-regular 3raphs cn 2ach ot 'hese sels arc nence 1203 tur

(k+1)-regular graph Gy
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k = l(mod +):
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5. TheConpectivity of Gy .

To prove that Gy is k-connected we proceed in two steps. First we consider an intermediate graph

G"k obtained from Gy by inserting only the Ci's. (From this point on we shall denote the subgraphs

guaranteed by the Wang and Kleitman resufton A; by <Aj>, on B .3 by <B k3 >, etc)
2 2

We now pnoceed to show G" to be k-connected. Let u and v be two distinct points in G .

Suppose first that neither u nor v is a midpoint.
. i uand v feinthe same C]- then there exist k 0.d. u-v paths in SQ};, since <Cj> is k-connected.

The analkgous result hoids when u and v lie in the same C‘j )

2. It u and v feintwodifferent Cy's, C'j'soroneina Ci andtheotherina Cfj. thenthere exist k o.c.

u-v paths since such a set of paths exists in G’x . More precisely, suppose u€ Cyy and v€ Gy In Gy foi
each midpoint adjacentto C,; choose a peintin C,; different from u . (Henceforth we shall refer to such a
point as a fqot of miS midpointin Cyy .) This is possible because each midpcint has atleast k-1> 2

such feetin C,, . So the feet seiected in this way form a set of k distinct points in Cy, different from u .
Now since < 7, ;> 1S k-connected by a weil-known vanation of Menger's Theorem, there exists a fan of

caths n <CU> ‘rcm u ‘o 2ach of the k feet chosen.

Receat this prececure :n <C,> and use these two k-fans, together with suitable pieces cfthe k o.d.

caths in G’y ioining <C;> contractedto apointto <Cy> contracted to a point.

This argument is also validit u and v areinthe same C;, the same C'; oroneisina C; and the cther

na C'j .

3. Suppose uZYUY WX and vé Cj or C’]- . Without loss of generality, suppose v 2 C] . Since G is

k-connected, there exist k 0.d. u-v pathsin G and using the argument of Case 2, we cantind k 2.2

u-v pathsin G .

4. M{uvic YU Y U X, then k o.d. u-v paths are found using the k-ccnnectednessof G’y and :he

fact that all <Ct> 's are themselves k-connected.
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So it remains to treat the cases when at least one of u and v is a midpoint. Note thatin G , the

midpoints have degree k f they lie between Y and Z orbetween Y and Z, and they have degree k + 1
it they lie between X and Z orbetween X and Z'.

First suppose both u and v are midpoints in Gk .

Let us now first consider the case when u and v are adjacent to the same <Ci> (or <C'j>). Then u

and v are adjacent to at least k-1 different points of C; respectively. By Menger's Theorem there are at

least k-1 o.d. u-v paths in the subgraph <Cj; U {uvi> of G'x. Calithem Py, ..., Px.1 . Alsosince G is
2- connected, there is a cycle N in G’k containing the lines L, and L, (whose midpoints are u and v)
and hence N - Ly - Ly is a path which may be used to construct a path Q joining u and v which is openly

disjoint from all the Pj's. Thus {Py, ..., Px-1. Q} isthe desired u - v k-skein.

Now suppose u and v are adjacent (as midpoints) to different <C;>'s, say Cy and C, respectively.

Now in G’ the 2 points corresponding to the contractions of < Cy> and < Cy > are joined by k o.d.
paths. Callthem Py, ..., P . Oneof these - say P, -usesline L. Choose k-1 distinctfeetof u in G .

Call this set Uy . Also for each path P;, i=1, choose exactly one footin Cy, . Call this set Up . We then

have Uy UlUs _ Cy;, Uy MUy = ¢ and [Uy| = [Up| = k-1. Since <Cy;> is (k-1)-connected, by Menger's
Theorem there exist k-1 totally disjoint paths in <C;> joining the points of U4 to those of Uy . A simlar

argument applies to <Cy>. Using these paths within <C;> and <Cy> as well as paths P, ..., Py, wecan

construct k 0.d. u-v pathsin G

Finally, suppose u is a micpointin G" , but v is not. Suppose u is adjacentto <C,;>. Butthis's
even simpler than the proceding case. In G, let Py, ..., Px be k 0.d. paths joining the contraction to a
pointof <C;> withpoint v. As before, let Uy be asetot k-1 teetot u in C;; and choose U sothatit

contains precisely one foot of each of the rest of the midpoints adjacentto < Cy>. Then [Uq| = Uzj =

-1, Uy N Up = ¢ and since <Cy> is (k-1)-connected we can proceed as beforetoget k 0.d. u-v

faths.

This completes the proof that Gy is k-connected.
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Now insertthe Aj's, Aj's, (and B K-3 and B8 K3 if k=1(modd4)) into G . Also insert points b =’
2 2 .
and b’ together with their respective k-fansto B .3 and B' .3 . Butdonotjoin b and b’ yet. )
2 2
r'd
Actually, we will now show that Gy - b - b' is k-connected. So suppose {u.v} _ V(Gk) - (b.b} . "
‘-’
L Suppose {uv} N(AjUA) = ¢, forall ij and {uv) M B 3 UB 3 ) =0 wnen «= 4
¥ %
(mod 4). Thensince Gk is k-connected there are k o.d. u-v paths Py, ... Py in G°x  Since al ]
<Ap's, <A'p>'s, B 523 and 8 51 are connected, paths Py, ... Pk Givenseto k o.d. saths 24, .. Iy ¥
joining uand v in Gy . :
S
Before proceeding to the next case, we siate and prove the tollowing statement. ,
Claim (a) It y; £ Y comesponcs to inserted subgrach A; (respectvely B k-3 0 Gy arct L.
2
Lx ar=the % linesincicentwith y; in G’ . thengiven any poirt u < A; (resgecavely 3 <3 here zxsis
2
a k-fan in A; (respectively B k-3 ). which can te extenced o a k-fan ,cining J 'c the Micseirts ot _ "
2
»
[ -
.n’
(b)  Analogous statements hold for y'; £ Y° with rescectto A irespectively 3 <3
Proot of Claim. We prove only part () as (b) is proved in just the same way Scppese v, scorraspercs ‘,:
to A;. Choose any point u £ A;. Then u is one of exactly two feet in A; of scme micoaint x Succoese .
w is the other of these two feet. Form aset U cf k peints by including w ard 2xactly 2ne 2t =2 Suz 'ast <

o fe -

PR I
N .
.

ot all the other k-1 midpoints acjacentto A;. Thensince uf U and <A;> s k<connected, here 2xig's 2

fanof p. sfrom u to each ofthe k peintsin U which inturn leads to the -fan scugnt.

Now suppose Y, comesponds to B K3 - Thatis, yi - k3 - Ltu<B K1 There are we Case
2 2 2

bbb A'Jl'a.‘ .'-".

to consider.
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First suppose u is the foot of new point b. Then sinca u is not a foot of any of the midpoints of L,
. ki andsince B k-3 s k-connected, there is @ k-fan of paths from u to the (unique) foot of each L, in
2

B k.3 - Thereare k such feet and this fan clearly extends to one from u to each of the k midpoints of
2

Lye oo L

So suppose u is the foot of some Lj in B K-3 - Without loss of generality, suppose u is the ‘oot ct
2

Ly. Thensince B | .q is k-<connecled, thereis afanat u tothefeetin 8 . oteach ot thek - 1 lines
’ 2 5

Lo, ... Lg . These k-1 paths, together with the line from the foot of L, to the midpointof L,  clearty

extends to afantrom u to the midpoint of each of Ly, .., L as desired. This completes the precot of the

Claim.

2. Now suppose at least one of uv fesinan A, A}, B (1, or B' .3 . butthat u and v Jo et
2 2

doth iie in the same one of these sets. Since G"y 1S k-connected. there are k 0.d. u-v paths.n 57

which together with the tans guaranteed Dy the above Claim. where necessary. yielg x 0C. u-v 2ahs n

Gac

3. it octh u and v feinthesame <A > <A'> <8 3 > or <8 1 >
i i
2 2
subgraphs are k-conneclec. there exist k 0.d. u - v paths as desired.

then since ad ot trese

Thus Gy - b -9 18 k<<cnnected. 't remains "ow '0 acc faitts B and D N themic < DCirts 23Cn ~

'

3 3 ard 8 ,; asdescnbec earier Butfwecin D '0ts < points. the resttirg grach 3y - T s
2

x-cgnnected Sy \Mengers Theorem anc then ciming 2 !0 1S x neightcurs. the rasuitin S

aloliotdc lolslNCTINE I

<-Conrecied By the same reascrirg Euthen acairg ire o we otain G which Tust Se

wi

<ccnnected Cearty Gy s k- 'l-regular

Finally we ncte that'nviaidy 'he Tk pairts ot 7 _ T ie on e cemmen cycie .n Gy since 2

L
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